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1. The Einstein Field Equations

𝑅𝜇𝜈 −
1
2𝑔𝜇𝜈𝑅 = 8𝜋𝐺

𝑐4 𝑇𝜇𝜈

Sybmbol Name Quantity Dimensions

𝑅𝜇𝜈 Ricci tensor curvature 𝐿−2

𝑔𝜇𝜈 Metric tensor dimensionless —

𝑅 Ricci scalar curvature 𝐿−2

𝐺 Universal constant gravitational coupling 𝐿3𝑀−1𝑇−2

𝑐 Speed of light speed 𝐿𝑇−1

𝑇𝜇𝜈 Stress–energy tensor energy density 𝑀𝐿−1𝑇−2

Table 1: Key quantities in general relativity

1.1. Stress–energy tensor 𝑇𝜇𝜈
The stress–energy tensor describes how energy and momentum are spread out in space and how they 

flow. It bundles together rest–mass 𝜌𝑐2, thermal, kinetic, and radiation contributions, varying from 

point to point in spacetime. In a chosen frame, 𝑇00 is the energy density, 𝑇0𝑖 gives the flow of energy 

(or momentum density), and 𝑇 𝑖𝑗  gives the stresses such as pressure and shear.

1.2. The Metric Tensor

d𝑠2 = 𝑔𝜇𝜈 d𝑥𝜇 d𝑥𝜈

1.3. The Christoffel Symbols

𝛤𝜌
𝜇𝜈 =

1
2𝑔

𝜌𝜎(∂𝜇𝑔𝜈𝜎 + ∂𝜈𝑔𝜇𝜎 − ∂𝜎𝑔𝜇𝜈)

1.4. The Riemann tensor

𝑅𝛼𝜇𝛽𝜈 = ∂𝛽𝛤𝛼
𝜇𝜈 − ∂𝜈𝛤𝛼

𝜇𝛽 + 𝛤𝛼
𝜇𝜈𝛤

𝜌
𝛽𝜌 − 𝛤𝛼

𝜇𝜌𝛤
𝜌
𝛽𝜈

1.5. The Ricci tensor
As a contraction of the Riemann tensor

𝑅𝜇𝜈 = 𝑅𝜆𝜇𝜆𝜈

Or directly from the Christoffel symbols

𝑅𝜇𝜈 = ∂𝜆𝛤𝜆
𝜇𝜈 − ∂𝜈𝛤𝜆

𝜇𝜆 + 𝛤𝜆
𝜇𝜈𝛤

𝜌
𝜆𝜌 − 𝛤𝜆

𝜇𝜌𝛤
𝜌
𝜆𝜈
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1.6. The Ricci scalar

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈
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2. The Schwarzschild Metric Derivation

2.1. The metric and it inverse
The Schwarzschild Metric is for the empty space near a spherically symmetric non-rotating chargeless 

mass. The coordinates are 𝑥𝜇 = (𝑐𝑡, 𝑟, 𝜃, 𝜑). We will begin with the standard ansatz for the 

Schwarzschild metric where 𝐴 and 𝐵 are unknow functions of 𝑟. The other two non-zero terms in the 

metric are determined by requiring spherical symmetry. Being static makes all 𝑔𝑡𝑖 and 𝑔𝑖𝑡 terms equal 

zero. Spherical symmetry requires all 𝑔𝑟𝜃, 𝑔𝑟𝜑, and 𝑔𝜃𝜑 terms to be zero.

𝑔𝜇𝜈 =

(



𝐴
0
0
0

0
𝐵
0
0

0
0
𝑟2
0

0
0
0

𝑟2 sin2 𝜃)





Because the metric is diagonal the inverse metric is simply the reciprocal of each element.

𝑔𝜇𝜈 =

(





 1

𝐴

0

0

0

0
1

𝐵

0

0

0

0
1

𝑟2

0

0

0

0
1

𝑟2 sin2 𝜃)







2.2. The Partial Derivatives

∂𝑟𝑔𝑡𝑡 = 𝐴′

∂𝑟𝑔𝑟𝑟 = 𝐵′

∂𝑟𝑔𝜃𝜃 = 2𝑟

∂𝑟𝑔𝜑𝜑 = 2𝑟 sin2 𝜃

∂𝜃𝑔𝜑𝜑 = 2𝑟2 sin 𝜃 cos 𝜃

others = 0

2.3. The Christoffel Symbols
Because this metric is diagonal the Christoffel Symbols equations simplifies to the following:

𝛤𝜌
𝜇𝜈 =

1
2𝑔

𝜌𝜌(∂𝜇𝑔𝜈𝜌 + ∂𝜈𝑔𝜇𝜌 − ∂𝜌𝑔𝜇𝜈) no sum on 𝜌

With three indexes in 4d spacetime there are 64 Christoffel Symbols. But they are symmetric in the 

lower index so that leaves only 40. And because there are only 5 partial derivatives of the metric that 

are non-zero only the following Christoffel Symbols are non-zero.
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𝛤𝑡
𝑡𝑟 = 𝛤𝑡

𝑟𝑡 =
1
2𝑔

𝑡𝑡(∂𝑡𝑔𝑟𝑡 + ∂𝑟𝑔𝑡𝑡 − ∂𝑡𝑔𝑡𝑟) = 𝐴′
2𝐴

𝛤𝑟
𝑡𝑡 =

1
2𝑔

𝑟𝑟(∂𝑡𝑔𝑡𝑟 + ∂𝑡𝑔𝑡𝑟 − ∂𝑟𝑔𝑡𝑡) = −𝐴′
2𝐵

𝛤𝑟
𝑟𝑟 =

1
2𝑔

𝑟𝑟(∂𝑟𝑔𝑟𝑟 + ∂𝑟𝑔𝑟𝑟 − ∂𝑟𝑔𝑟𝑟) = 𝐵′
2𝐵

𝛤𝑟
𝜃𝜃 =

1
2𝑔

𝑟𝑟(∂𝜃𝑔𝜃𝑟 + ∂𝜃𝑔𝜃𝑟 − ∂𝑟𝑔𝜃𝜃) = −2𝑟
2𝐵 = −𝑟

𝐵

𝛤𝑟
𝜑𝜑 = 1

2𝑔
𝑟𝑟(∂𝜑𝑔𝜑𝑟 + ∂𝜑𝑔𝜑𝑟 − ∂𝑟𝑔𝜑𝜑) = −2𝑟 sin2 𝜃

2𝐵 = −𝑟 sin2 𝜃
𝐵

𝛤𝜃
𝜃𝑟 = 𝛤𝜃

𝑟𝜃 =
1
2𝑔

𝜃𝜃(∂𝜃𝑔𝑟𝜃 + ∂𝑟𝑔𝜃𝜃 − ∂𝜃𝑔𝜃𝑟) = 2𝑟
2𝑟2 =

1
𝑟

𝛤𝜃
𝜑𝜑 = 1

2𝑔
𝜃𝜃(∂𝜑𝑔𝜑𝜃 + ∂𝜑𝑔𝜑𝜃 − ∂𝜃𝑔𝜑𝜑) = −2𝑟2 sin 𝜃 cos 𝜃

2𝑟2 = −sin 𝜃 cos 𝜃

𝛤𝜑
𝜑𝑟 = 𝛤𝜑

𝑟𝜑 = 1
2𝑔

𝜑𝜑(∂𝜑𝑔𝑟𝜑 + ∂𝑟𝑔𝜑𝜑 − ∂𝜑𝑔𝜑𝑟) = 2𝑟 sin2 𝜃
2𝑟2 sin2 𝜃 = 1

𝑟

𝛤𝜑
𝜑𝜃 = 𝛤𝜑

𝜃𝜑 = 1
2𝑔

𝜑𝜑(∂𝜑𝑔𝜃𝜑 + ∂𝜃𝑔𝜑𝜑 − ∂𝜑𝑔𝜑𝜃) =
2𝑟2 sin 𝜃 cos 𝜃
2𝑟2 sin2 𝜃 = cot 𝜃

2.4. The Ricci Tensor

2.4.1. 𝑅𝑡𝑡 Component of the Ricci Tensor

𝑅𝑡𝑡 = ∂𝜆𝛤𝜆
𝑡𝑡 − ∂𝑡𝛤𝜆

𝑡𝜆 + 𝛤𝜆
𝑡𝑡𝛤

𝜌
𝜆𝜌 − 𝛤𝜆

𝑡𝜌𝛤
𝜌
𝜆𝑡

𝑅𝑡𝑡 First Term Only the partial with respect to 𝑟 will be non-zero

∂𝜆𝛤𝜆
𝑡𝑡 = ∂𝑡𝛤𝑡

𝑡𝑡 + ∂𝑟𝛤𝑟
𝑡𝑡 + ∂𝜃𝛤𝜃

𝑡𝑡 + ∂𝜑𝛤
𝜑
𝑡𝑡

= ∂𝑟
−𝐴′
2𝐵

= (−2𝐵′)(−𝐴′) + (−𝐴″)(2𝐵)
4𝐵2

= 𝐴′𝐵′

2𝐵2 − 𝐴″
2𝐵

𝑅𝑡𝑡 Second Term All partials with respect to 𝑡 are zero.

∂𝑡𝛤𝜆
𝑡𝜆 = ∂𝑡𝛤𝑡

𝑡𝑡 + ∂𝑡𝛤𝑟
𝑡𝑟 + ∂𝑡𝛤𝜃

𝑡𝜃 + ∂𝑡𝛤
𝜑
𝑡𝜑

= 0

𝑅𝑡𝑡 Third Term The only value of 𝜆 that has a non-zero Christoffel is 𝑟 and then all values of 𝜌 will 

have non-zero Christoffel Symbols.
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𝛤𝜆
𝑡𝑡𝛤

𝜌
𝜆𝜌 = 𝛤𝑡

𝑡𝑡𝛤𝑡
𝑡𝑡 + 𝛤𝑡

𝑡𝑡𝛤𝑟
𝑡𝑟 + 𝛤𝑡

𝑡𝑡𝛤𝜃
𝑡𝜃 + 𝛤𝑡

𝑡𝑡𝛤
𝜑
𝑡𝜑

+𝛤𝑟
𝑡𝑡𝛤𝑡

𝑟𝑡 + 𝛤𝑟
𝑡𝑡𝛤𝑟

𝑟𝑟 + 𝛤𝑟
𝑡𝑡𝛤𝜃

𝑟𝜃 + 𝛤𝑟
𝑡𝑡𝛤

𝜑
𝑟𝜑

+𝛤𝜃
𝑡𝑡𝛤𝑡

𝜃𝑡 + 𝛤𝜃
𝑡𝑡𝛤𝑟

𝜃𝑟 + 𝛤𝜃
𝑡𝑡𝛤𝜃

𝜃𝜃 + 𝛤𝜃
𝑡𝑡𝛤

𝜑
𝜃𝜑

+𝛤𝜑
𝑡𝑡𝛤𝑡

𝜑𝑡 + 𝛤𝜑
𝑡𝑡𝛤𝑟

𝜑𝑟 + 𝛤𝜑
𝑡𝑡𝛤𝜃

𝜑𝜃 + 𝛤𝜑
𝑡𝑡𝛤

𝜑
𝜑𝜑

= −𝐴′
2𝐵

𝐴′
2𝐴 + −𝐴′

2𝐵
𝐵′
2𝐵 + −𝐴′

2𝐵
1
𝑟 +

−𝐴′
2𝐵

1
𝑟

= − 𝐴′2
4𝐴𝐵 − 𝐴′𝐵′

4𝐵2 − 𝐴′
𝑟𝐵

𝑅𝑡𝑡 Fourth Term The only non-zero Christoffel symbols have one 𝑟 and two 𝑡 indices.

𝛤𝜆
𝑡𝜌𝛤

𝜌
𝜆𝑡 = 𝛤𝑡

𝑡𝑡𝛤𝑡
𝑡𝑡 + 𝛤𝑡

𝑡𝑟𝛤𝑟
𝑡𝑡 + 𝛤𝑡

𝑡𝜃𝛤𝜃
𝑡𝑡 + 𝛤𝑡

𝑡𝜑𝛤
𝜑
𝑡𝑡

+𝛤𝑟
𝑡𝑡𝛤𝑡

𝑟𝑡 + 𝛤𝑟
𝑡𝑟𝛤𝑟

𝑟𝑡 + 𝛤𝑟
𝑡𝜃𝛤𝜃

𝑟𝑡 + 𝛤𝑟
𝑡𝜑𝛤

𝜑
𝑟𝑡

+𝛤𝜃
𝑡𝑡𝛤𝑡

𝜃𝑡 + 𝛤𝜃
𝑡𝑟𝛤𝑟

𝜃𝑡 + 𝛤𝜃
𝑡𝜃𝛤

𝜃
𝜃𝑡 + 𝛤𝜃

𝑡𝜑𝛤
𝜑
𝜃𝑡

+𝛤𝜑
𝑡𝑡𝛤𝑡

𝜑𝑡 + 𝛤𝜑
𝑡𝑟𝛤𝑟

𝜑𝑡 + 𝛤𝜑
𝑡𝜃𝛤𝜃

𝜑𝑡 + 𝛤𝜑
𝑡𝜑𝛤

𝜑
𝜑𝑡

= −𝐴′
2𝐵

𝐴′
2𝐴 + 𝐴′

2𝐴
−𝐴′
2𝐵

= − 𝐴′2
2𝐴𝐵

𝑅𝑡𝑡 Complete

𝑅𝑡𝑡 =
𝐴′𝐵′

2𝐵2 − 𝐴″
2𝐵 − 0 + −𝐴′2

4𝐴𝐵 − 𝐴′𝐵′

4𝐵2 + −𝐴′
𝑟𝐵 − −𝐴′2

2𝐴𝐵

𝑅𝑡𝑡 = −𝐴
″

2𝐵 + 𝐴′𝐵′

4𝐵2 + 𝐴′2
4𝐴𝐵 − 𝐴′

𝑟𝐵 (2.1)

2.4.2. 𝑅𝑟𝑟 Component of the Ricci Tensor

𝑅𝑟𝑟 = ∂𝜆𝛤𝜆
𝑟𝑟 − ∂𝑟𝛤𝜆

𝑟𝜆 + 𝛤𝜆
𝑟𝑟𝛤

𝜌
𝜆𝜌 − 𝛤𝜆

𝑟𝜌𝛤
𝜌
𝜆𝑟

𝑅𝑟𝑟 First Term Only the partial with respect to 𝑟 will be non-zero

∂𝜆𝛤𝜆
𝑟𝑟 = ∂𝑡𝛤𝑡

𝑟𝑟 + ∂𝑟𝛤𝑟
𝑟𝑟 + ∂𝜃𝛤𝜃

𝑟𝑟 + ∂𝜑𝛤
𝜑
𝑟𝑟

= ∂𝑟
𝐵′
2𝐵

= (−2𝐵′)(𝐵′) + (𝐵″)(2𝐵)
4𝐵2

= − 𝐵′2

2𝐵2 +
𝐵″
2𝐵

𝑅𝑟𝑟 Second Term

5



∂𝑟𝛤𝜆
𝑟𝜆 = ∂𝑟𝛤𝑡

𝑟𝑡 + ∂𝑟𝛤𝑟
𝑟𝑟 + ∂𝑟𝛤𝜃

𝑟𝜃 + ∂𝑟𝛤
𝜑
𝑟𝜑

= ∂𝑟
𝐴′
2𝐴 + ∂𝑟

𝐵′
2𝐵 + ∂𝑟

1
𝑟 + ∂𝑟

1
𝑟

= (−2𝐴′)(𝐴′) + (𝐴″)(2𝐴)
4𝐴2 + (−2𝐵′)(𝐵′) + (𝐵″)(2𝐵)

4𝐵2 + −1
𝑟2 + −1

𝑟2

= −𝐴′2

2𝐴2 + 𝐴″
2𝐴 + −𝐵′2

2𝐵2 + 𝐵″
2𝐵 + −2

𝑟2

= − 𝐴′2

2𝐴2 +
𝐴″
2𝐴 − 𝐵′2

2𝐵2 +
𝐵″
2𝐵 − 2

𝑟2

𝑅𝑟𝑟 Third Term The only value of 𝜆 that has a non-zero Christoffel is 𝑟 and then all values of 𝜌 will 

have non-zero Christoffel Symbols.

𝛤𝜆
𝑟𝑟𝛤

𝜌
𝜆𝜌 = 𝛤𝑡

𝑟𝑟𝛤𝑡
𝑡𝑡 + 𝛤𝑡

𝑟𝑟𝛤𝑟
𝑡𝑟 + 𝛤𝑡

𝑟𝑟𝛤𝜃
𝑡𝜃 + 𝛤𝑡

𝑟𝑟𝛤
𝜑
𝑡𝜑

+𝛤𝑟
𝑟𝑟𝛤𝑡

𝑟𝑡 + 𝛤𝑟
𝑟𝑟𝛤𝑟

𝑟𝑟 + 𝛤𝑟
𝑟𝑟𝛤𝜃

𝑟𝜃 + 𝛤𝑟
𝑟𝑟𝛤

𝜑
𝑟𝜑

+𝛤𝜃
𝑟𝑟𝛤𝑡

𝜃𝑡 + 𝛤𝜃
𝑟𝑟𝛤𝑟

𝜃𝑟 + 𝛤𝜃
𝑟𝑟𝛤𝜃

𝜃𝜃 + 𝛤𝜃
𝑟𝑟𝛤

𝜑
𝜃𝜑

+𝛤𝜑
𝑟𝑟𝛤𝑡

𝜑𝑡 + 𝛤𝜑
𝑟𝑟𝛤𝑟

𝜑𝑟 + 𝛤𝜑
𝑟𝑟𝛤𝜃

𝜑𝜃 + 𝛤𝜑
𝑟𝑟𝛤

𝜑
𝜑𝜑

= 𝐵′
2𝐵

𝐴′
2𝐴 + 𝐵′

2𝐵
𝐵′
2𝐵 + 𝐵′

2𝐵
1
𝑟 +

𝐵′
2𝐵

1
𝑟

= 𝐴′𝐵′
4𝐴𝐵 + 𝐵′2

4𝐵2 +
𝐵′
𝑟𝐵

𝑅𝑟𝑟 Fourth Term The only non-zero Christoffel symbols have one 𝑟 index and the other two indices 

are equal.

𝛤𝜆
𝑟𝜌𝛤

𝜌
𝜆𝑟 = 𝛤𝑡

𝑟𝑡𝛤𝑡
𝑡𝑟 + 𝛤𝑡

𝑟𝑟𝛤𝑟
𝑡𝑟 + 𝛤𝑡

𝑟𝜃𝛤𝜃
𝑡𝑟 + 𝛤𝑡

𝑟𝜑𝛤
𝜑
𝑡𝑟

+𝛤𝑟
𝑟𝑡𝛤𝑡

𝑟𝑟 + 𝛤𝑟
𝑟𝑟𝛤𝑟

𝑟𝑟 + 𝛤𝑟
𝑟𝜃𝛤𝜃

𝑟𝑟 + 𝛤𝑟
𝑟𝜑𝛤

𝜑
𝑟𝑟

+𝛤𝜃
𝑟𝑡𝛤𝑡

𝜃𝑟 + 𝛤𝜃
𝑟𝑟𝛤𝑟

𝜃𝑟 + 𝛤𝜃
𝑟𝜃𝛤

𝜃
𝜃𝑟 + 𝛤𝜃

𝑟𝜑𝛤
𝜑
𝜃𝑟

+𝛤𝜑
𝑟𝑡𝛤𝑡

𝜑𝑟 + 𝛤𝜑
𝑟𝑟𝛤𝑟

𝜑𝑟 + 𝛤𝜑
𝑟𝜃𝛤𝜃

𝜑𝑟 + 𝛤𝜑
𝑟𝜑𝛤

𝜑
𝜑𝑟

= 𝐴′
2𝐴

𝐴′
2𝐴 + 𝐵′

2𝐵
𝐵′
2𝐵 + 1

𝑟
1
𝑟 +

1
𝑟
1
𝑟

= 𝐴′2

4𝐴2 +
𝐵′2

4𝐵2 +
2
𝑟2

𝑅𝑟𝑟 Complete
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𝑅𝑟𝑟 = (− 𝐵′2

2𝐵2 +
𝐵″
2𝐵)

−(− 𝐴′2

2𝐴2 +
𝐴″
2𝐴 − 𝐵′2

2𝐵2 +
𝐵″
2𝐵 − 2

𝑟2)

+(𝐴
′𝐵′

4𝐴𝐵 + 𝐵′2

4𝐵2 +
𝐵′
𝑟𝐵)

−( 𝐴
′2

4𝐴2 +
𝐵′2

4𝐵2 +
2
𝑟2)

𝑅𝑟𝑟 = −𝐴″
2𝐴 + 𝐴′𝐵′

4𝐴𝐵 + 𝐴′2

4𝐴2 +
𝐵′
𝑟𝐵 (2.2)

2.4.3. 𝑅𝜃𝜃 Component of the Ricci Tensor

𝑅𝜃𝜃 = ∂𝜆𝛤𝜆
𝜃𝜃 − ∂𝜃𝛤𝜆

𝜃𝜆 + 𝛤𝜆
𝜃𝜃𝛤

𝜌
𝜆𝜌 − 𝛤𝜆

𝜃𝜌𝛤
𝜌
𝜆𝜃

𝑅𝜃𝜃 First Term Only the partial with respect to 𝑟 will be non-zero

∂𝜆𝛤𝜆
𝜃𝜃 = ∂𝑡𝛤𝑡

𝜃𝜃 + ∂𝑟𝛤𝑟
𝜃𝜃 + ∂𝜃𝛤𝜃

𝜃𝜃 + ∂𝜑𝛤
𝜑
𝜃𝜃

= ∂𝑟
−𝑟
𝐵

= (−𝐵′)(−𝑟) + (−1)(𝐵)
𝐵2

= 𝑟𝐵′

𝐵2 − 1
𝐵

𝑅𝜃𝜃 Second Term Only the partial with respect to 𝜃 is non-zero

∂𝜃𝛤𝜆
𝜃𝜆 = ∂𝜃𝛤𝑡

𝜃𝑡 + ∂𝜃𝛤𝑟
𝜃𝑟 + ∂𝜃𝛤𝜃

𝜃𝜃 + ∂𝜃𝛤
𝜑
𝜃𝜑

= ∂𝜃 cot 𝜃

= − 1
sin2𝜃

= −csc2 𝜃

𝑅𝜃𝜃 Third Term The only value of 𝜆 that has a non-zero Christoffel is 𝑟 and then all values of 𝜌 will 

have non-zero Christoffel Symbols.
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𝛤𝜆
𝜃𝜃𝛤

𝜌
𝜆𝜌 = 𝛤𝑡

𝜃𝜃𝛤𝑡
𝑡𝑡 + 𝛤𝑡

𝜃𝜃𝛤𝑟
𝑡𝑟 + 𝛤𝑡

𝜃𝜃𝛤
𝜃
𝑡𝜃 + 𝛤𝑡

𝜃𝜃𝛤
𝜑
𝑡𝜑

+𝛤𝑟
𝜃𝜃𝛤𝑡

𝑟𝑡 + 𝛤𝑟
𝜃𝜃𝛤𝑟

𝑟𝑟 + 𝛤𝑟
𝜃𝜃𝛤

𝜃
𝑟𝜃 + 𝛤𝑟

𝜃𝜃𝛤
𝜑
𝑟𝜑

+𝛤𝜃
𝜃𝜃𝛤

𝑡
𝜃𝑡 + 𝛤𝜃

𝜃𝜃𝛤
𝑟
𝜃𝑟 + 𝛤𝜃

𝜃𝜃𝛤
𝜃
𝜃𝜃 + 𝛤𝜃

𝜃𝜃𝛤
𝜑
𝜃𝜑

+𝛤𝜑
𝜃𝜃𝛤𝑡

𝜑𝑡 + 𝛤𝜑
𝜃𝜃𝛤𝑟

𝜑𝑟 + 𝛤𝜑
𝜃𝜃𝛤

𝜃
𝜑𝜃 + 𝛤𝜑

𝜃𝜃𝛤
𝜑
𝜑𝜑

= −𝑟
𝐵

𝐴′
2𝐴 + −𝑟

𝐵
𝐵′
2𝐵 + −𝑟

𝐵
1
𝑟 +

−𝑟
𝐵
1
𝑟

= − 𝑟𝐴′
2𝐴𝐵 − 𝑟𝐵′

2𝐵2 −
2
𝐵

𝑅𝜃𝜃 Fourth Term The only non-zero Christoffel symbols have one 𝑟 and two angular indices.

𝛤𝜆
𝜃𝜌𝛤

𝜌
𝜆𝜃 = 𝛤𝑡

𝜃𝑡𝛤
𝑡
𝑡𝜃 + 𝛤𝑡

𝜃𝑟𝛤
𝑟
𝑡𝜃 + 𝛤𝑡

𝜃𝜃𝛤
𝜃
𝑡𝜃 + 𝛤𝑡

𝜃𝜑𝛤
𝜑
𝑡𝜃

+𝛤𝑟
𝜃𝑡𝛤

𝑡
𝑟𝜃 + 𝛤𝑟

𝜃𝑟𝛤
𝑟
𝑟𝜃 + 𝛤𝑟

𝜃𝜃𝛤
𝜃
𝑟𝜃 + 𝛤𝑟

𝜃𝜑𝛤
𝜑
𝑟𝜃

+𝛤𝜃
𝜃𝑡𝛤

𝑡
𝜃𝜃 + 𝛤𝜃

𝜃𝑟𝛤
𝑟
𝜃𝜃 + 𝛤𝜃

𝜃𝜃𝛤
𝜃
𝜃𝜃 + 𝛤𝜃

𝜃𝜑𝛤
𝜑
𝜃𝜃

+𝛤𝜑
𝜃𝑡𝛤

𝑡
𝜑𝜃 + 𝛤𝜑

𝜃𝑟𝛤
𝑟
𝜑𝜃 + 𝛤𝜑

𝜃𝜃𝛤
𝜃
𝜑𝜃 + 𝛤𝜑

𝜃𝜑𝛤
𝜑
𝜑𝜃

= −𝑟
𝐵
1
𝑟 +

1
𝑟
−𝑟
𝐵 + cot 𝜃 cot 𝜃

= −2
𝐵 + cot2 𝜃

𝑅𝜃𝜃 Complete

𝑅𝜃𝜃 =
𝑟𝐵′

𝐵2 − 1
𝐵

−(− csc2(𝜃))

+(− 𝑟𝐴′
2𝐴𝐵 − 𝑟𝐵′

2𝐵2 −
2
𝐵)

−(−2
𝐵 + cot2 𝜃)

= − 𝑟𝐴′
2𝐴𝐵 + 𝑟𝐵′

2𝐵2 −
1
𝐵 + csc2 𝜃 − cot2 𝜃

𝑅𝜃𝜃 = − 𝑟𝐴′
2𝐴𝐵 + 𝑟𝐵′

2𝐵2 −
1
𝐵 + 1 (2.3)

2.4.4. 𝑅𝜑𝜑 Component of the Ricci Tensor

𝑅𝜑𝜑 = ∂𝜆𝛤𝜆
𝜑𝜑 − ∂𝜑𝛤𝜆

𝜑𝜆 + 𝛤𝜆
𝜑𝜑𝛤

𝜌
𝜆𝜌 − 𝛤𝜆

𝜑𝜌𝛤
𝜌
𝜆𝜑

𝑅𝜑𝜑 First Term Only the partials with respect to 𝑟 and 𝜃 will be non-zero
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∂𝜆𝛤𝜆
𝜑𝜑 = ∂𝑡𝛤𝑡

𝜑𝜑 + ∂𝑟𝛤𝑟
𝜑𝜑 + ∂𝜃𝛤𝜃

𝜑𝜑 + ∂𝜑𝛤
𝜑
𝜑𝜑

= ∂𝑟(
−𝑟 sin2 𝜃

𝐵 ) + ∂𝜃(− sin 𝜃 cos 𝜃)

=
(𝐵)(− sin2 𝜃) − (−𝑟 sin2 𝜃)(𝐵′)

𝐵2 + (− sin 𝜃)(− sin 𝜃) + (cos 𝜃)(− cos 𝜃)

= −sin
2 𝜃
𝐵 + 𝑟 sin2 𝜃𝐵′

𝐵2 + sin2 𝜃 − cos2 𝜃

𝑅𝜑𝜑 Second Term All partials with respect to 𝜑 are zero.

∂𝜑𝛤𝜆
𝜑𝜆 = ∂𝜑𝛤𝑡

𝜑𝑡 + ∂𝜑𝛤𝑟
𝜑𝑟 + ∂𝜑𝛤𝜃

𝜑𝜃 + ∂𝜑𝛤
𝜑
𝜑𝜑

= 0

𝑅𝜑𝜑 Third Term The only value of 𝜆 that has a non-zero Christoffel is 𝑟 and then all values of 𝜌 

contribute.

𝛤𝜆
𝜑𝜑𝛤

𝜌
𝜆𝜌 = 𝛤𝑡

𝜑𝜑𝛤𝑡
𝑡𝑡 + 𝛤𝑡

𝜑𝜑𝛤𝑟
𝑡𝑟 + 𝛤𝑡

𝜑𝜑𝛤𝜃
𝑡𝜃 + 𝛤𝑡

𝜑𝜑𝛤
𝜑
𝑡𝜑

+𝛤𝑟
𝜑𝜑𝛤𝑡

𝑟𝑡 + 𝛤𝑟
𝜑𝜑𝛤𝑟

𝑟𝑟 + 𝛤𝑟
𝜑𝜑𝛤𝜃

𝑟𝜃 + 𝛤𝑟
𝜑𝜑𝛤

𝜑
𝑟𝜑

+𝛤𝜃
𝜑𝜑𝛤𝑡

𝜃𝑡 + 𝛤𝜃
𝜑𝜑𝛤𝑟

𝜃𝑟 + 𝛤𝜃
𝜑𝜑𝛤𝜃

𝜃𝜃 + 𝛤𝜃
𝜑𝜑𝛤

𝜑
𝜃𝜑

+𝛤𝜑
𝜑𝜑𝛤𝑡

𝜑𝑡 + 𝛤𝜑
𝜑𝜑𝛤𝑟

𝜑𝑟 + 𝛤𝜑
𝜑𝜑𝛤𝜃

𝜑𝜃 + 𝛤𝜑
𝜑𝜑𝛤

𝜑
𝜑𝜑

= (−𝑟 sin
2 𝜃

𝐵 )( 𝐴
′

2𝐴) + (−𝑟 sin
2 𝜃

𝐵 )( 𝐵
′

2𝐵) + (−𝑟 sin
2 𝜃

𝐵 )(1𝑟 ) + (−𝑟 sin
2 𝜃

𝐵 )(1𝑟 )

+(− sin 𝜃 cos 𝜃)(cot 𝜃)

= −𝑟 sin
2 𝜃𝐴′

2𝐴𝐵 − 𝑟 sin2 𝜃𝐵′

2𝐵2 − 2 sin2 𝜃
𝐵 − cos2 𝜃

𝑅𝜑𝜑 Fourth Term The non-zero Christoffel products involve the (𝑟, 𝜑) and (𝜃, 𝜑) couplings.

𝛤𝜆
𝜑𝜌𝛤

𝜌
𝜆𝜑 = 𝛤𝑡

𝜑𝑡𝛤𝑡
𝑡𝜑 + 𝛤𝑡

𝜑𝑟𝛤𝑟
𝑡𝜑 + 𝛤𝑡

𝜑𝜃𝛤𝜃
𝑡𝜑 + 𝛤𝑡

𝜑𝜑𝛤
𝜑
𝑡𝜑

+𝛤𝑟
𝜑𝑡𝛤𝑡

𝑟𝜑 + 𝛤𝑟
𝜑𝑟𝛤𝑟

𝑟𝜑 + 𝛤𝑟
𝜑𝜃𝛤𝜃

𝑟𝜑 + 𝛤𝑟
𝜑𝜑𝛤

𝜑
𝑟𝜑

+𝛤𝜃
𝜑𝑡𝛤𝑡

𝜃𝜑 + 𝛤𝜃
𝜑𝑟𝛤𝑟

𝜃𝜑 + 𝛤𝜃
𝜑𝜃𝛤

𝜃
𝜃𝜑 + 𝛤𝜃

𝜑𝜑𝛤
𝜑
𝜃𝜑

+𝛤𝜑
𝜑𝑡𝛤𝑡

𝜑𝜑 + 𝛤𝜑
𝜑𝑟𝛤𝑟

𝜑𝜑 + 𝛤𝜑
𝜑𝜃𝛤𝜃

𝜑𝜑 + 𝛤𝜑
𝜑𝜑𝛤

𝜑
𝜑𝜑

= (−𝑟 sin
2 𝜃

𝐵 )(1𝑟 ) + (− sin 𝜃 cos 𝜃)(cot 𝜃)

+(1𝑟 )(−
𝑟 sin2 𝜃

𝐵 ) + (cot 𝜃)(− sin 𝜃 cos 𝜃)

= −2 sin
2 𝜃

𝐵 − 2 cos2 𝜃

𝑅𝜑𝜑 Complete
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𝑅𝜑𝜑 = (−sin
2 𝜃
𝐵 + 𝑟 sin2 𝜃𝐵′

𝐵2 + sin2 𝜃 − cos2 𝜃)

−0

+(−𝑟 sin
2 𝜃𝐴′

2𝐴𝐵 − 𝑟 sin2 𝜃𝐵′

2𝐵2 − 2 sin2 𝜃
𝐵 − cos2 𝜃)

−(−2 sin
2 𝜃

𝐵 − 2 cos2 𝜃)

= −𝑟 sin
2 𝜃𝐴′

2𝐴𝐵 + 𝑟 sin2 𝜃𝐵′

2𝐵2 − sin2 𝜃
𝐵 + sin2 𝜃

𝑅𝜑𝜑 = sin2 𝜃(− 𝑟𝐴′
2𝐴𝐵 + 𝑟𝐵′

2𝐵2 −
1
𝐵 + 1) (2.4)

2.4.5. The Ricci Tensor

𝑅𝜇𝜈 =

(





−𝐴″

2𝐵
+ 𝐴′𝐵′

4𝐵2
+ 𝐴′2

4𝐴𝐵
− 𝐴′

𝑟𝐵

0

0

0

0

−𝐴″

2𝐴
+ 𝐴′𝐵′

4𝐴𝐵
+ 𝐴′2

4𝐴2
+ 𝐵′

𝑟𝐵

0

0

0

0

− 𝑟𝐴′

2𝐴𝐵
+ 𝑟𝐵′

2𝐵2
− 1

𝐵
+ 1

0

0

0

0

sin2 𝜃(− 𝑟𝐴′

2𝐴𝐵
+ 𝑟𝐵′

2𝐵2
− 1

𝐵
+ 1)

)







In the normal derivation of the Schwarzschild metric, at this point the fact that the Ricci Tensor is all 

zeros is used. However, I could not convince myself of the truth of that statement, so I decided to 

continue without it. Later in Section 2.5.6 I will show that it is.
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2.4.6. The Ricci scalar

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈

= 𝑔𝑡𝑡𝑅𝑡𝑡 + 𝑔𝑟𝑟𝑅𝑟𝑟 + 𝑔𝜃𝜃𝑅𝜃𝜃 + 𝑔𝜑𝜑𝑅𝜑𝜑

= 1
𝐴(−

𝐴″
2𝐵 + 𝐴′𝐵′

4𝐵2 + 𝐴′2
4𝐴𝐵 − 𝐴′

𝑟𝐵)

+1
𝐵(−

𝐴″
2𝐴 + 𝐴′𝐵′

4𝐴𝐵 + 𝐴′2

4𝐴2 +
𝐵′
𝑟𝐵)

+ 1
𝑟2(−

𝑟𝐴′
2𝐴𝐵 + 𝑟𝐵′

2𝐵2 −
1
𝐵 + 1)

+ 1
𝑟2 sin2 𝜃(sin

2 𝜃( 𝑟𝐴
′

2𝐴𝐵 + 𝑟𝐵′

2𝐵2 −
1
𝐵 + 1))

= − 𝐴″
2𝐴𝐵 + 𝐴′𝐵′

4𝐴𝐵2 +
𝐴′2

4𝐴2𝐵 − 𝐴′
𝑟𝐴𝐵

− 𝐴″
2𝐴𝐵 + 𝐴′𝐵′

4𝐴𝐵2 +
𝐴′2

4𝐴2𝐵 + 𝐵′

𝑟𝐵2

− 𝐴′
2𝑟𝐴𝐵 + 𝐵′

2𝑟𝐵2 −
1
𝑟2𝐵 + 1

𝑟2

− 𝐴′
2𝑟𝐴𝐵 + 𝐵′

2𝑟𝐵2 −
1
𝑟2𝐵 + 1

𝑟2

= − 𝐴″
𝐴𝐵 + 𝐴′𝐵′

2𝐴𝐵2 +
𝐴′2

2𝐴2𝐵 − 2𝐴′
𝑟𝐴𝐵 + 2𝐵′

𝑟𝐵2 −
2
𝑟2𝐵 + 2

𝑟2
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2.5. The Einstein Field Equation

2.5.1. The 𝑡𝑡 Einstein Field Equation

𝑅𝑡𝑡 −
1
2𝑔𝑡𝑡𝑅 = 0

−𝐴
″

2𝐵 + 𝐴′𝐵′

4𝐵2 + 𝐴′2
4𝐴𝐵 − 𝐴′

𝑟𝐵

−12𝐴(−
𝐴″
𝐴𝐵 + 𝐴′𝐵′

2𝐴𝐵2 +
𝐴′2

2𝐴2𝐵 − 2𝐴′
𝑟𝐴𝐵 + 2𝐵′

𝑟𝐵2 −
2
𝑟2𝐵 + 2

𝑟2) = 0

distribute −1

2
𝐴

−𝐴
″

2𝐵 + 𝐴′𝐵′

4𝐵2 + 𝐴′2
4𝐴𝐵 − 𝐴′

𝑟𝐵

+𝐴
″

2𝐵 − 𝐴′𝐵′

4𝐵2 − 𝐴′2
4𝐴𝐵 + 𝐴′

𝑟𝐵 − 𝐴𝐵′

𝑟𝐵2 +
𝐴
𝑟2𝐵 − 𝐴

𝑟2 = 0

cancel opposites

−𝐴𝐵
′

𝑟𝐵2 +
𝐴
𝑟2𝐵 − 𝐴

𝑟2 = 0

multiply by − 𝑟

𝐴
 and move the last term to the right hand side

𝐵′

𝐵2 −
1
𝑟𝐵 = −1𝑟

This is a Bernoulli differential equation. Substitute 𝑉 = − 1

𝐵
 and 𝑉 ′ = 𝐵′

𝐵2

𝑉 ′ + 𝑉
𝑟 = −1𝑟

compute integrating factor, 𝑒∫
1
𝑟
d𝑟 = 𝑒ln 𝑟 = 𝑟, and multiply by it

𝑟𝑉 ′ + 𝑉 = −1
(𝑟𝑉)′ = −1

integrate both sides

∫(𝑟𝑉)′ = −∫1d𝑟

𝑟𝑉 = −𝑟 + 𝐶1

𝑉 = −1 + 𝐶1
𝑟

recall 𝑉 = − 1

𝐵
 so 𝐵 = − 1

𝑉
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𝐵 = − 1

−1 + 𝐶1

𝑟

𝐵 = 1

1 − 𝐶1

𝑟

notice that this correctly matches the boundary condition 𝐵(∞) = 𝜂𝑟𝑟 = 1

2.5.2. The 𝑟𝑟 Einstein Field Equation

𝑅𝑟𝑟 −
1
2𝑔𝑟𝑟𝑅 = 0

−𝐴″
2𝐴 + 𝐴′𝐵′

4𝐴𝐵 + 𝐴′2

4𝐴2 +
𝐵′
𝑟𝐵

−12𝐵(−
𝐴″
𝐴𝐵 + 𝐴′𝐵′

2𝐴𝐵2 +
𝐴′2

2𝐴2𝐵 − 2𝐴′
𝑟𝐴𝐵 + 2𝐵′

𝑟𝐵2 −
2
𝑟2𝐵 + 2

𝑟2) = 0

distribute −1

2
𝐵

−𝐴″
2𝐴 + 𝐴′𝐵′

4𝐴𝐵 + 𝐴′2

4𝐴2 +
𝐵′
𝑟𝐵

+𝐴″
2𝐴 − 𝐴′𝐵′

4𝐴𝐵 − 𝐴′2

4𝐴2 +
𝐴′
𝑟𝐴 − 𝐵′

𝑟𝐵 + 1
𝑟2 −

𝐵
𝑟2 = 0

cancel opposite terms

𝐴′
𝑟𝐴 + 1

𝑟2 −
𝐵
𝑟2 = 0

multiply remaining terms by 𝑟 and separate variables

𝐴′
𝐴 = 1

𝑟𝐵 −
1
𝑟

substitute the value of 𝐵 derived from the 𝑡𝑡 field equation

𝐴′
𝐴 = 1

𝑟
1

1 − 𝐶1

𝑟

− 1
𝑟

simplify

𝐴′
𝐴 = 1

𝑟 − 𝐶1
− 1
𝑟

integrate both sides

∫ 𝐴′
𝐴 d𝑟 = ∫( 1

𝑟 − 𝐶1
− 1
𝑟) d𝑟

ln|𝐴| = ln|𝑟 − 𝐶1| − ln(𝑟) + 𝐶2
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raise both sides to 𝑒

𝑒ln|𝐴| = 𝑒ln|𝑟−𝐶1| − ln(𝑟)+𝐶2

simplify

𝐴 = 𝐾(𝑟 − 𝐶1)
1
𝑟

distribute 
1

𝑟

𝐴 = 𝐾(1 −
𝐶1
𝑟 )

apply boundary condition 𝐴(∞) = 𝜂𝑡𝑡 = −1 to determine 𝐾 = −1

𝐴 = −(1 −
𝐶1
𝑟 )

2.5.3. Solve for 𝐶1

A and B — and the relationship between them and a derivative.

𝐴 = −(1 −
𝐶1
𝑟 )

𝐵 = 1

1 − 𝐶1

𝑟

𝐵 = − 1
𝐴

𝐴′ = −𝐶1𝑟2

Spacetime Coordinates and Proper Time

These are the spherical spacetime coordinates as functions of proper time 𝜏. The 𝑡 coordinate is 

multiplied by 𝑐 so that all four coordinates will be in length units.

𝑥𝜇 = (𝑐𝑡(𝜏), 𝑟(𝜏), 𝜃(𝜏), 𝜑(𝜏))

where 𝜏 is defined by the following relation

−𝑐2d𝜏2 ≔ d𝑠2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈

For a non moving obj at some distance 𝑟 from the center of a sphere the coordinates are

𝑥𝜇 = (𝑐𝑡(𝜏), 𝑟, 𝜃, 𝜑)

The Four-Velocity

The four-velocity is the ordinary derivative of the spacetime coordinates with respect to proper time.

𝑢𝜇 = d𝑥𝜇
d𝜏 = (

d(𝑐𝑡)
d𝜏 , d𝑟d𝜏,

d𝜃
d𝜏 ,

d𝜑
d𝜏 )
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For a motionless object this reduces to

𝑢𝜇 = (
d(𝑐𝑡)
d𝜏 , 0, 0, 0)

Solve for 
d(𝑐𝑡)

d𝜏
 of a motionless object using the Schwarzschild metric

−𝑐2d𝜏2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈

−𝑐2d𝜏2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈

= 𝑔𝑡𝑡d𝑥𝑡d𝑥𝑡 + 𝑔𝑟𝑟d𝑥𝑟d𝑥𝑟 + 𝑔𝜃𝜃d𝑥𝜃d𝑥𝜃 + 𝑔𝜑𝜑d𝑥𝜑d𝑥𝜑

= 𝑔𝑡𝑡(d𝑥𝑡)2 + 𝑔𝑟𝑟(d𝑥𝑟)2 + 𝑔𝜃𝜃(d𝑥𝜃)
2
+ 𝑔𝜑𝜑(d𝑥𝜑)2

= 𝐴(d(𝑐𝑡))2 + 𝐵d𝑟2 + 𝑟2d𝜃2 + 𝑟2 sin2 𝜃d𝜑2

divide both sides by d𝜏2 and recall that in this case the positional derivatives are zero

−𝑐2 = 𝐴(
d(𝑐𝑡)
d𝜏 )

2
+ 𝐵(d𝑟d𝜏)

2
+ 𝑟2(d𝜃d𝜏)

2
+ 𝑟2 sin2 𝜃(

d𝜑
d𝜏 )

2

simplify

d(𝑐𝑡)
d𝜏 = √

−𝑐2
𝐴 = 𝑐√−1

𝐴

recall 𝐵 = − 1

𝐴

d(𝑐𝑡)
d𝜏 = 𝑐√𝐵 (2.5)

so the four-velocity is

𝑢𝜇 = (𝑐√𝐵, 0, 0, 0)

As a check, verify the following invariant

−𝑐2 ≟ 𝑢𝜇𝑢𝜇

−𝑐2 ≟ 𝑔𝑡𝑡𝑢𝑡𝑢𝑡

−𝑐2 ≟ 𝐴(𝑐√𝐵)(𝑐√𝐵)

−𝑐2 ≟ 𝐴𝑐2𝐵

again recalling 𝐵 = − 1

𝐴

−𝑐2 ≡ −𝑐2 ✓

The Four-Acceleration

The four-acceleration is the Total Covariant Derivative with respect to proper time
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𝑎𝜇 = D𝑢𝜇
D𝜏 = (d𝑢

𝜇

d𝜏 + 𝛤𝜇
𝜈𝜌𝑢𝜈𝑢𝜌)

Compute the four-acceleration for a motionless object in Schwarzchild space. The only non-zero 

component will be 𝑎𝑟.

𝑎𝑟 = D𝑢𝑟
D𝜏 = (d𝑢

𝑟

d𝜏 + 𝛤𝑟
𝜈𝜌𝑢𝜈𝑢𝜌)

𝑎𝑟 = 𝛤𝑟
𝑡𝑡𝑢𝑡𝑢𝑡

𝑎𝑟 = −𝐴′
2𝐵 (𝑐√𝐵)

2

the 𝐵s cancel

𝑎𝑟 = −𝑐2𝐴′
2

So the four-acceleration is:

𝑎𝜇 = (0, −𝑐
2𝐴′
2 , 0, 0)

The proper acceleration 𝛼 is given by:

𝛼 = √𝑎𝜇𝑎𝜇 = √𝑔𝜇𝜈𝑎𝜇𝑎𝜈

For Schwarschild, since only 𝑎𝑟 is non zero, this reduces to

𝛼 = √𝑎𝑟𝑎𝑟 = √𝑔𝑟𝑟𝑎𝑟𝑎𝑟

𝛼 = 𝑎𝑟√𝑔𝑟𝑟

substitute in the equations for 𝑎𝑟 and 𝑔𝑟𝑟

𝛼 = −𝑐2𝐴′
2

√𝐵

and then subsitute in the equations 𝐴′ and 𝐵

𝛼 = 𝑐2𝐶1
2𝑟2

√


 1

1 − 𝐶1

𝑟

Newtons law of universal gravitation is

𝐹 = 𝐺𝑀𝑚
𝑟2

divide by 𝑚 to get Newtonian gravitational acceleration

𝑎 = 𝐺𝑀
𝑟2
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Make Schwarschild GR proper acceleration approximate Newtonian gravitational acceleration.

𝐺𝑀
𝑟2 ≈ 𝑐2𝐶1

2𝑟2
√


 1

1 − 𝐶1

𝑟

Guess that 
𝐶1

𝑟
≪ 1

𝐺𝑀
𝑟2 ≈ 𝑐2𝐶1

2𝑟2
√


 1

1 − 𝐶1

𝑟

solve for 𝐶1

𝐶1 ≈
2𝐺𝑀
𝑐2

At the surface of the earth 
𝐶1

𝑟
= 1.4 × 10−9 which is ≪ 1. And Actually, since 𝐺 is measured and GR is 

the more accurate representations of reality, this is the exact value of 𝐶1.

𝐶1 =
2𝐺𝑀
𝑐2

Substituting 𝐶1 into the equation for proper acceleration gives the exact GR equation.

𝛼 = 𝐺𝑀
𝑟2

√


 1

1 − 2𝐺𝑀

𝑐2𝑟

Which means the Newtonian equation is the approximation.

𝑎 ≈ 𝐺𝑀
𝑟2

substitute 𝐶1 into 𝐴 and 𝐵

𝐴 = −(1 − 2𝐺𝑀
𝑐2𝑟 ) (2.6)

𝐵 = 1

1 − 2𝐺𝑀

𝑐2𝑟

(2.7)

2.5.4. The Schwarzschild Metric

𝑔𝜇𝜈 =

(




−(1 − 2𝐺𝑀

𝑐2𝑟
)

0

0
0

0
1

1−2𝐺𝑀
𝑐2𝑟

0
0

0

0

𝑟2
0

0

0

0
𝑟2 sin2 𝜃)







The Schwarzschild Radius 𝑟𝑠 is defined as:
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𝑟𝑠 ≔
2𝐺𝑀
𝑐2

It is the key scaling parameter in Schwarzschild geometry. It is used to define the Metric function 𝑓(𝑟):

𝑓(𝑟) ≔ 1 −
𝑟𝑠
𝑟

With these defenitions the Schwarzschild Metric can be rewritten as:

𝑔𝜇𝜈 =

(



−𝑓(𝑟)

0

0
0

0
1

𝑓(𝑟)
0
0

0
0

𝑟2
0

0
0

0
𝑟2 sin2 𝜃)






2.5.5. The Christoffel Symbols

𝐴 and 𝐵 and their derivatives can be written in terms of the Metric function 𝑓.

𝐴 = −𝑓
𝐴′ = −𝑓′

𝐴″ = −𝑓″𝐵 = 𝑓−1

𝐵′ = −𝑓−2𝑓′

Use the above to eliminate 𝐴 and 𝐵 from the Christoffel Symbols as derived in Section 2.3

𝛤𝑡
𝑡𝑟 = 𝛤𝑡

𝑟𝑡 =
𝐴′

2𝐴
= −𝑓′

2(−𝑓)
= 𝑓′

2
𝑓−1

𝛤𝑟
𝑡𝑡 =

−𝐴′

2𝐵
= 𝑓′

2𝑓−1
= 𝑓′

2
𝑓

𝛤𝑟
𝑟𝑟 =

𝐵′

2𝐵
= −𝑓−2𝑓′

2𝑓−1
= −𝑓′

2
𝑓−1

𝛤𝑟
𝜃𝜃 = − 𝑟

𝐵
= − 𝑟

𝑓−1
= −𝑟𝑓

𝛤𝑟
𝜑𝜑 = −𝑟 sin2 𝜃

𝐵
= −𝑟 sin2 𝜃

𝑓−1
= −𝑟 sin2 𝜃𝑓
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The Christoffel Symbols can now be written in terms of the Metric function, the Swarzchild Radius, or 

the Mass and fundemental contants. The Christoffel Symbols that do not depend on the Metric function 

have been restated here for completness.

𝛤𝑡
𝑡𝑟 = 𝛤𝑡

𝑟𝑡 =
𝑓′

2 𝑓
−1 =

𝑟𝑠
2𝑟2 (1 −

𝑟𝑠
𝑟 )

−1
= 𝐺𝑀

𝑐2𝑟2(1 −
2𝐺𝑀
𝑐2𝑟 )

−1

𝛤𝑟
𝑡𝑡 =

𝑓′

2 𝑓 =
𝑟𝑠
2𝑟2 (1 −

𝑟𝑠
𝑟 ) = 𝐺𝑀

𝑐2𝑟2(1 −
2𝐺𝑀
𝑐2𝑟 )

𝛤𝑟
𝑟𝑟 = −

𝑓′

2 𝑓
−1 = −

𝑟𝑠
2𝑟2 (1 −

𝑟𝑠
𝑟 )

−1
= −𝐺𝑀𝑐2𝑟2(1 −

2𝐺𝑀
𝑐2𝑟 )

−1

𝛤𝑟
𝜃𝜃 = −𝑟𝑓 = −𝑟(1 −

𝑟𝑠
𝑟 ) = −𝑟(1 − 2𝐺𝑀

𝑐2𝑟 )

𝛤𝑟
𝜑𝜑 = −𝑟 sin2 𝜃𝑓 = −𝑟 sin2 𝜃(1 −

𝑟𝑠
𝑟 ) = −𝑟 sin2 𝜃(1 − 2𝐺𝑀

𝑐2𝑟 )

𝛤𝜃
𝜃𝑟 = 𝛤𝜃

𝑟𝜃 =
1
𝑟

𝛤𝜃
𝜑𝜑 = −sin 𝜃 cos 𝜃

𝛤𝜑
𝜑𝑟 = 𝛤𝜑

𝑟𝜑 = 1
𝑟

𝛤𝜑
𝜑𝜃 = 𝛤𝜑

𝜃𝜑 = cot 𝜃

2.5.6. The Ricci Tensor is Zero

Previously, I noted that the Ricci tensor is zero, but I was not yet convinced of that fact.

Ricci Tensor 𝑅𝑡𝑡 — Start with the equation we derived previously:

𝑅𝑡𝑡 = −𝐴
″

2𝐵 + 𝐴′𝐵′

4𝐵2 + 𝐴′2
4𝐴𝐵 − 𝐴′

𝑟𝐵
see Equation (2.1)

Replace 𝐴 and 𝐵 and their derivatives with 𝑓 and its derivative.

𝑅𝑡𝑡 = −
−𝑓″

2𝑓−1 +
(−𝑓′)(−𝑓−2𝑓′)

4(𝑓−1)2
+

−𝑓′2

4(−𝑓)(𝑓−1)
−

−𝑓′

𝑟(𝑓−1)

Simplify

𝑅𝑡𝑡 =
𝑓″

2𝑓−1 −
𝑓′2

4 +
𝑓′2

4 +
𝑓′

𝑟(𝑓−1)

Elimate the middle terms and factor out an 𝑓

𝑅𝑡𝑡 = (
𝑓″

2 +
𝑓′

𝑟 )𝑓

The first and second derivatives of the metric function are 𝑓′ = 𝑟𝑠/𝑟2 and 𝑓″ = −2𝑟𝑠/𝑟3. Substituting 

these into the above gives:

𝑅𝑡𝑡 = (−
𝑟𝑠
𝑟3 +

𝑟𝑠
𝑟3 )𝑓 = 0
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Ricci Tensor 𝑅𝑟𝑟 — Start with the equation we derived previously:

𝑅𝑟𝑟 = −𝐴″
2𝐴 + 𝐴′𝐵′

4𝐴𝐵 + 𝐴′2

4𝐴2 +
𝐵′
𝑟𝐵

see Equation (2.2)

Rewrite in terms of 𝑓 and simplify

𝑅𝑟𝑟 = −
−𝑓″

2(−𝑓)
+
(−𝑓′)(−𝑓−2𝑓′)
4(−𝑓)(𝑓−1)

+ (−𝑓′)2

4(−𝑓)2
+
−𝑓−2𝑓′

𝑟(𝑓−1)

= −
𝑓″

2𝑓 −
𝑓′2

4𝑓2 +
𝑓′2

4𝑓2 −
𝑓′

𝑟𝑓

= −(
𝑓″

2 +
𝑓′

𝑟 )
1
𝑓

= (−
𝑟𝑠
𝑟3 +

𝑟𝑠
𝑟3 )

1
𝑓

= −(0) 1𝑓
= 0

Ricci Tensor 𝑅𝜃𝜃 — Start with the equation we derived previously:

𝑅𝜃𝜃 = − 𝑟𝐴′
2𝐴𝐵 + 𝑟𝐵′

2𝐵2 −
1
𝐵 + 1 see Equation (2.3)

Rewrite in terms of 𝑓 and simplify

𝑅𝜃𝜃 = −
𝑟(−𝑓′)

2(−𝑓)(𝑓−1)
+
𝑟(−𝑓−2𝑓′)

2(𝑓−1)2
− 1
𝑓−1 + 1

= −
𝑟𝑓′

2 −
𝑟𝑓′

2 − 𝑓 + 1

= −𝑟𝑓′ − 𝑓 + 1

= −𝑟(
𝑟𝑠
𝑟2 ) − (1 −

𝑟𝑠
𝑟 ) + 1

= −
𝑟𝑠
𝑟 − 1 +

𝑟𝑠
𝑟 + 1

= 0

Ricci Tensor 𝑅𝜑𝜑 — Start with the equation we derived previously:

𝑅𝜑𝜑 = sin2 𝜃(− 𝑟𝐴′
2𝐴𝐵 + 𝑟𝐵′

2𝐵2 −
1
𝐵 + 1) see Equation (2.4)

Note that the term in parentheses equals 𝑅𝜃𝜃:

𝑅𝜑𝜑 = sin2 𝜃(𝑅𝜃𝜃)

= sin2 𝜃(0)
= 0
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Ricci Tensor is Zero — The above have shown that for the Schwarzschild Metric all of the 

components of the Ricci Tensor are zero. Which also means that the Ricci scalar is zero.
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3. The Schwarzschild Metric Applications

3.1. Time Dilation (Stationary)
Consider two stationary clocks in the Schwarzschild geometry, located at fixed radii 𝑟1 and 𝑟2:

𝑥𝜇1 (𝜏1) = (𝑐𝑡1(𝜏1), 𝑟1, 𝜃0, 𝜑0)

𝑥𝜇2 (𝜏2) = (𝑐𝑡2(𝜏2), 𝑟2, 𝜃0, 𝜑0)

Solve for 
d(𝑐𝑡)

d𝜏
 of a motionless object using the Schwarzschild metric

−𝑐2d𝜏2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈

−𝑐2d𝜏2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈

= 𝑔𝑡𝑡d𝑥𝑡d𝑥𝑡 + 𝑔𝑟𝑟d𝑥𝑟d𝑥𝑟 + 𝑔𝜃𝜃d𝑥𝜃d𝑥𝜃 + 𝑔𝜑𝜑d𝑥𝜑d𝑥𝜑

= 𝑔𝑡𝑡(d𝑥𝑡)2 + 𝑔𝑟𝑟(d𝑥𝑟)2 + 𝑔𝜃𝜃(d𝑥𝜃)
2
+ 𝑔𝜑𝜑(d𝑥𝜑)2

= −𝑓(𝑟)(d(𝑐𝑡))2 + 𝑓(𝑟)−1d𝑟2 + 𝑟2d𝜃2 + 𝑟2 sin2 𝜃d𝜑2

Divide both sides by d𝜏2 and recall that in this case the positional derivatives are zero

−𝑐2 = −𝑓(𝑟)(
d(𝑐𝑡)
d𝜏 )

2
+ 𝑓(𝑟)−1(d𝑟d𝜏)

2
+ 𝑟2(d𝜃d𝜏)

2
+ 𝑟2 sin2 𝜃(

d𝜑
d𝜏 )

2

d(𝑐𝑡)
d𝜏 = 𝑐√𝑓(𝑟)−1

Divide both sides by the speed of light 𝑐 to get the rate of change of coordinate time 𝑡 with respect to 

proper time 𝜏:

d𝑡
d𝜏 =

1
√𝑓(𝑟)

Inverting provides the rate of change of proper time with respect to coordinate time:

̇𝜏 = d𝜏
d𝑡 =

√𝑓(𝑟)

Given a coordinate time interval 𝛥𝑡, we can compute the proper time interval 𝛥𝜏:

𝛥𝜏 = ∫
𝑡0+𝛥𝑡

𝑡=𝑡0

̇𝜏 d𝑡

Because in this case ̇𝜏 is constant with respect to 𝑡:

= ̇𝜏∫
𝑡0+𝛥𝑡

𝑡=𝑡0

d𝑡

= ̇𝜏 |𝑡0+𝛥𝑡𝑡0

= ̇𝜏𝛥𝑡
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Compute the difference in elapsed proper times between two radii:

𝛥𝜏21 ≔ 𝛥𝜏2 − 𝛥𝜏1
= ̇𝜏2𝛥𝑡 − ̇𝜏1𝛥𝑡
= ( ̇𝜏2 − ̇𝜏1)𝛥𝑡

= ( ̇𝜏2 − ̇𝜏1)(𝛥
𝜏1
̇𝜏1
)

= (
̇𝜏2
̇𝜏1
− 1)𝛥𝜏1

= (
√𝑓(𝑟2)
√𝑓(𝑟1)

− 1)𝛥𝜏1

= (
√

𝑓(𝑟2)
𝑓(𝑟1)

− 1)𝛥𝜏1

𝛥𝜏21 =

(




√


1− 𝑟𝑠

𝑟2

1 − 𝑟𝑠
𝑟1

− 1

)



𝛥𝜏1

3.1.1. Earth

For Earth, the Schwarzschild radius is:

𝑅𝑠,⊕ =
2𝐺𝑀⊕

𝑐2 = 8.870 mm

This would be the radius of the event horizon of a black hole with the mass of earth.

The following table shows the gravitational time dilation caused by the earth relative to a clock at sea 

level (𝑟1) These do not take into account the time dilation caused by the velocity of the clocks. It’s as if 

the clocks are “hovering” at the given altitude. The next section will account for the velocity of the 

clocks.
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Name Alt (m) ̇𝜏2 𝛥𝜏21 (1d) 𝛥𝜏21 (1y)

Dead Sea −430 0.99999999930382 −4.0 ns −1.4 μs

Death Valley −86 0.99999999930386 −805.7 ps −294.3 ns

Sea Level 0 0.99999999930387

1 meter 1 0.99999999930387 19.1 ps 7.0 ns

Chandler, AZ 370 0.99999999930391 3.5 ns 1.2 μs

Mount Everest 8,848 0.99999999930483 83.4 ns 30.4 μs

Passenger Jet 10,000 0.99999999930496 94.2 ns 34.4 μs

ISS Orbit 409,000 0.99999999934586 3.6 μs 1.3 ms

GPS Orbit 20,189,000 0.99999999983301 45.7 μs 16.6 ms

Geosynchronous 35,793,000 0.99999999989481 51.0 μs 18.6 ms

Moon Orbit 378,029,000 0.99999999998846 59.1 μs 21.6 ms

Infinity ∞ 1.00000000000000 60.1 μs 21.9 ms

Table 2: Earth Gravitational time dilation relative to Sea Level (𝑟1).

3.1.2. Sun

For the sun, the Schwarzschild radius is:

𝑅𝑠,⊙ =
2𝐺𝑀⊙

𝑐2 = 3.0 km

This table show the time dilation caused by the sun relative to a clock “hovering” at the radius of the 

earth’s orbit (𝑟1).
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Name Radius (au) ̇𝜏2 𝛥𝜏21 (1d) 𝛥𝜏21 (1y)

Sun Surface 0.0047 0.99999787743099 −182.5 ms −1.1 min

Mercury 0.39 0.99999997450019 −1.3 ms −493.2 ms

Venus 0.72 0.99999998635341 −326.2 μs −119.1 ms

Earth 1.0 0.99999999012907

Mars 1.5 0.99999999352165 293.1 μs 107.0 ms

Jupiter 5.2 0.99999999810335 688.9 μs 251.6 ms

Saturn 9.6 0.99999999896990 763.8 μs 278.9 ms

Uranus 19 0.99999999948592 808.4 μs 295.2 ms

Neptune 30 0.99999999967149 824.4 μs 301.1 ms

Infinity ∞ 1.00000000000000 852.8 μs 311.5 ms

Table 3: Sun Gravitational time dilation relative to Earth Orbit (𝑟1)

3.1.3. Sagittarius A∗
the Schwarzschild radius of Sagittarius A∗1, the Black hole at the center of the Milky is:

𝑅SgrA∗ =
2𝐺𝑀SgrA∗

𝑐2 = 12,690,000 km

Name Radius ̇𝜏2 𝛥𝜏21 (1d) 𝛥𝜏21 (1y)

Event Horizon 𝑅𝑠 0.085 au 0.00000000000000 −1.0 d −1.0 yr

𝑅𝑠 + 1 m 0.085 au 0.00000887688449 −23.9 hr −365.2 d

Photon Sphere2 1.5𝑅𝑠 0.13 au 0.57735026918962 −10.1 hr −154.3 d

ISCO3 3𝑅𝑠 0.25 au 0.81649658092772 −4.4 hr −67.0 d

S2 Peribothron4 120 au 0.99964647605890 −30.5 s −3.0 hr

S2 Apobothron 1,800 au 0.99997692281632 −1.9 s −12.1 min

Earth 26,000 ly 0.99999999997420 −2.2 μs −814.0 μs

Andromeda Galaxy 2,500,000 ly 0.99999999999973 −23.1 ns −8.4 μs

Infinity ∞ 1.00000000000000 0.0 s 0.0 s

Table 4: Sagittarius A∗ Gravitational time dilation relative to Infinity (𝑟1)

1A∗ is pronounced “A Star”

2The Radius that light orbits

3Innermost Stable Circular Orbit

4S2 is a star with a highly eccentric orbit around SgrA∗. Bothron from the Ancient Greek βόθρος (bóthros), “pit.”
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