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Introduction
This is my personal record of studying general relativity. I am writing it to:
« organize the material in a way that makes sense to me
« work through the derivations step by step
« force myself to understand the material more deeply by writing it out, and
« create a reference I can return to as I continue learning.

This is not intended as a textbook or a guide for others. It’s simply my personal working notes. It is still
a work in progress. Many sections are incomplete, and others will change as I learn more and expand
my knowledge.
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1. The Einstein Field Equations
1 87G

Ry — Eg‘“’R = c_4T‘“’
Sybmbol Name Quantity Dimensions

Ry Ricci tensor curvature L2
8uv Metric tensor dimensionless —

R Ricci scalar curvature L2

G Universal constant gravitational coupling M1~

c Speed of light speed LT !
Ty Stress—energy tensor energy density ML T2

Table 1: Key quantities in general relativity

1.1. Stress—energy tensor T,

The stress—energy tensor describes how energy and momentum are spread out in space and how they
flow. It bundles together rest-mass pcz, thermal, kinetic, and radiation contributions, varying from
point to point in spacetime. In a chosen frame, T is the energy density, T% gives the flow of energy
(or momentum density), and T gives the stresses such as pressure and shear.

1.2. The Metric Tensor
ds* = g, dx* dx”
1.3. The Christoffel Symbols
iy = %g‘”(augw +8,8uc — 3:8uw)
1.4. The Riemann tensor
usy = OpLfhy = 0L ig + il g, = Loy
1.5. The Ricci tensor
As a contraction of the Riemann tensor
R;w = Ri}/lv
Or directly from the Christoffel symbols

1 A P 1 P
Ryy = 8;1y — 0,1 + T I, — Ty I,



1.6. The Ricci scalar
R= guyRm/



2. The Schwarzschild Metric Derivation

2.1. The metric and it inverse

The Schwarzschild Metric is for the empty space near a spherically symmetric non-rotating chargeless
mass. The coordinates are x* = (ct,r, 6, ). We will begin with the standard ansatz for the
Schwarzschild metric where A and B are unknow functions of r. The other two non-zero terms in the
metric are determined by requiring spherical symmetry. Being static makes all g;; and g;; terms equal
zero. Spherical symmetry requires all g, g4, and gg, terms to be zero.

A00 0

_loBo o

bv=loor o
0 0 0 r?sin?20

Because the metric is diagonal the inverse metric is simply the reciprocal of each element.

oo o
A
0<0 o0
g;w - B )
00 — 0
r2
000 —
r2sin2 0
2.2. The Partial Derivatives
argtt =A
argrr =B
Orgoo = 2r

0,8pp = 2rsin®@
dp8pp = 2r*sinBcos b
others =0

2.3. The Christoffel Symbols

Because this metric is diagonal the Christoffel Symbols equations simplifies to the following:

1
Iy = §gpp(augvp +3,8up — 9p8yuv)

With three indexes in 4d spacetime there are 64 Christoffel Symbols. But they are symmetric in the
lower index so that leaves only 40. And because there are only 5 partial derivatives of the metric that
are non-zero only the following Christoffel Symbols are non-zero.



1 A
If, =T} = Eg”(érgﬁ+ 0r8ut —%) =1
1, —A'
Iy = 58 (@rgt/r‘F/rg/ argtt> =3B
1 B’
F;r = Egrr<argrr + argrr argrr) = ﬁ
1 =2r —-r
Igo = ng(%ge/r+/3g/ arg66> =5~ F
1 —2rsin’8  —rsin?0
gy = 5g”<9¢g¢/+/¢g¢/r argw) =~ > "
0 2] 1 2r 1
I =Tvg = 5366(%/ 08oe —Qe%) =33 7
1 —2r?sin B cos 6
o _ 1 e0 _ —
Igy = 58 (§¢g¢/9+/ﬂg¢/9 aegw,> =—p =" sin 6 cos 6
1 2rsin?6 1
P _ P _ _ _
Tor =Trp = ng(% + 9r8op =2 w) = osin26 7
o 1 _ 2r’sinfcosf
Igo =Top, = 58%%| 3885 + 8o ‘ngso/e) = “Sraamg = oo
2.4. The Ricci Tensor
2.4.1. R;; Component of the Ricci Tensor
Ry =98, — 93, + F?trfp - Ft];orft

R;; First Term Only the partial with respect to r will be non-zero

3:Tfs = 3Pl + 8,IT, + dgT + 3T,
_A'
2B
_ (=2B)(=A") + (-A")(2B)
4B2
A'B A"
~ 2B 2B

=0

R;; Second Term All partials with respect to ¢t are zero.

8T}y = 8Pty + 3Pty + 3F% + 3, Pf,

=0

R;; Third Term The only value of 4 that has a non-zero Christoffel is r and then all values of p will

have non-zero Christoffel Symbols.



F/lp /t?fg+/ﬂ:+/rfi76/+w
+IT I + T + F[tl“ + Fttr‘P
+LiE G + LT h, + Lo g + ToFe,
+LS P, + P, + TiPeg + THFS,

AN -AB  -A1 A1
2B 2A 2B 2B 2B r 2B r
A/Z A/B/ il

R;; Fourth Term The only non-zero Christoffel symbols have one r and two ¢ indices.

rLrf, = Ll +ThLIT + DTt + L
+F{trﬁt+%+w+w
+LaTS, + L, + LogT e, + Ligter
HLE g + Ll + Ll g, + Tt g

_ _AI AI + A/ _A/
T 2B2A 24 2B
A”?
- T24B
R;; Complete
R _A/B/_14_/1_0+_A/2_A/B/+_A/__A/2
7 2B2 2B 4AB  4B> ' rB  2AB

R —_14_”+A,B’+A_,2_i,
™ 2B " 4B2 ' 4AB rB

2.4.2. R,, Component of the Ricci Tensor
Rrrza/lrizr aF +Fl/}rF/1p FAF/Ir

R, First Term Only the partial with respect to r will be non-zero

8/11—',{1, =/t’Pﬁ+ arFlfr +§6’FI?V/+W
B
= arﬁ
_ (=2B)(B) + (B")(2B)
4B2
2B2 ' 2B

R, Second Term

(2.1)



A 6
Oplyy = O,y + 0,7y + 0rl7g + arr;p(p

A B’ 1 1
= arﬂ + arﬁ + ar; + 8,;
_ (24040 + (A)2A) | (2BYB) +(BHEB) | -1 -1
4A2 4B2 r2 o r?
_A/2 Au _B/2 Br/ -2
+—+ =+ =+

~ 242 "247 22 T2BT 2
A/Z A// B/Z Bu 2

—_— G ——-— 4 — - =
242 2A 2B?2 2B r2

R, Third Term The only value of 4 that has a non-zero Christoffel is 7 and then all values of p will
have non-zero Christoffel Symbols.

¥el
[AIY, = Dhff + Dbl + Chd s + ChFly
LT + T Tl + T TS + ThIE,
+L5T 4, + LG, + Lot ge + LFE,
DR + LEPg, + ThF g + LHFE,
BA BB Bl Bl
2B2A  2B2B 2Br 2Br
AIBI + B_IZ + B_’
4AB  4B? rB

R, Fourth Term The only non-zero Christoffel symbols have one r index and the other two indices

are equal.
[iI5, = ThDh + Dl + Ligl o + DigThr
+LHPE + Tl + Digh S + ChgFfr
+L5 b, + L, + Tal g, + Logt e,

AA BB 11 11
2A2A  2B2B rr rvr
A? B? 2

et ap TR

R,, Complete



B/Z BH
Rer = (_232 * ﬁ)

U A G
2 2B2 2B r2
AI ! B/2 B/
+
4AB rB
A'2 L2
e ™ e
" 1251 12 !
A A'B A B 2.2)

R, = -
" 2A+4AB+4A+VB

2.4.3. Rgg Component of the Ricci Tensor
1 A AP A P
Rgg = 08;Igg —0¢I'g; + I'gel, — I'g T

Rgg First Term Only the partial with respect to r will be non-zero

3:Tgo = 8:Phy + 0,15 + 36F a0 + 0Pl

—-r
= a”F
_ (=B)(=r)+ (=1)(B)
= =
_rB" 1
~ B2 B

Rgg Second Term Only the partial with respect to 8 is non-zero
A P
99l = 3eFp: + 29 6r+§6Fé99/+66F9¢

= Jg cot O
1

~ sin?
= —csc?6
Rgg Third Term The only value of A that has a non-zero Christoffel is r and then all values of p will

have non-zero Christoffel Symbols.



Tolh, = LbeTh + Lhetty + LisT e + Lottty
+Tgelhy + Thelhe + Thol'vg + Tholfy
+DEsTl + LesT, + LT 6o + Loty
+LET o + Lt r + Lot g0 + Lt 8

B2AT BB "Br BT
_ A _rB 2
~  24AB 2B2 B

Rgg Fourth Term The only non-zero Christoffel symbols have one r and two angular indices.

Ta.lhe = Lto + Lo t@"‘%“‘%
+lg re+%+réerr69+w
+L5e o + L6, [0 + LosT 80 + Logl g0
+TEd g0 + LirFpo + LT g0 + TégT go

—rl 1-r
= §;+;§+C0t900t6
2 2
= 3 + cot* 8
Rgg Complete
rB" 1
Ree =T "5
—(—csc?(0))
+<_r_A’ _I1B z)
2AB 2B2 B
2 2
_<_§ + cot 9)
A rB" 1 2 5
= 2AB+2B2 B+csc 6 —cot“ 6
rA’ rB’ 1
Rog= = + == — = + 1
0="2a8 T2p2 BT

2.4.4. Ry, Component of the Ricci Tensor
_ 1 A A P L P
Rop = 0il'pp = 0plg + gyl = ol

Ry, First Term Only the partials with respect to r and 6 will be non-zero

(2.3)



Tgp = 8P + 8T + 361
—rQin2

- ar(%ne) + 3(— sin 6 cos 8)

_ (B)(—sin?0)

+9

— (—rsin®6)(B")
B2

rsin2 6B’

3 sin? 0
B

+ (—sin 8)(—sin 6) + (cos 6)(— cos H)

5 + sin? 6 — cos? 8

Ry, Second Term All partials with respect to ¢ are zero
8T p1 = 3Pt + dpFor + dFgo +

Ry, Third Term The only value of 1 that has a non-zero Christoffel is r and then all values of p
contribute.

Tool%p = Tl te + Lol + Dol to + Lol fy
Il + Tl + ool + T8,

HIeTh + LTS, + Lol Bo + TSl
+LEF e+ LosF o + Lot e + TécFhe

- (&) ) ()

_)+ _rsinze (1>

B )\r B Ar
+(—sin 8 cos 8)(cot 6)

_ _rsin2 6A rsin26B’  2sin%6

- 2AB

_ ane2
5 B cos“ 6

Ry, Fourth Term The non-zero Christoffel products involve the (r, ¢) and (6, ) couplings

Tl = Dol + LorFly + Loalfy + Doyl
+ Tty + DprPly + Dyt ry + Tl fy

e ey + Lorloy + Loatlp + Iiol &
@ P -6 @
+LEFh, + T o + ool og + LogFly

2
= ( r31;1 9)( )+( sin 6 cos 0)(cot 6)

+<%>(_rsi}r312 6) + (cot 8)(—sin 8 cos 6)

25sin? 0
= - — 2cos?
B cos“ 0

R, Complete



2 s 2 A
sin“® rsin“6B . 5 2
RW=<— B 72 + sin“ 6 — cos* 0
-0
rsin?6A’  rsin?6B’  2sin?6 ,
+(— - - —cos“ 6
2AB 2B2 B
2sin% 0
. —2cos?8
2% )
rsin® 6A' N rsin®6B’  sin’6 tsin?0
N 2AB 2B2 B
rA rB" 1
Ry, =sin?f(——— 4+ — —=+1 2.4
pp =51 <2AB+2B2 B+) (2.4)
2.4.5. The Ricci Tensor
_AT A A A 0 0 0
2B = 4B2 = 4AB B , . . ,
0 _AT AL AR B 0 0
Ry = 2A ' 4AB = 4A%2 B e
0 0 —— = ——+1 0
2AB  2B2 B , ,
0 0 0 sin2 e(—i LA 1)
2AB  2B2 B

In the normal derivation of the Schwarzschild metric, at this point the fact that the Ricci Tensor is all
zeros is used. However, I could not convince myself of the truth of that statement, so I decided to

continue without it. Later in Section 2.5.6 I will show that it is.

10



2.4.6. The Ricci scalar

R = glva/vw

= gttht + 8" Ry + geeRQG + g¢¢chcp

1A AB A A
A\ 2B 4B2 4AB rB
LA AR A7 B
B\ 2A 4AB 4A%2 rB
l<_ I"A, V_H — l + 1)
r2\ 2AB 2B? B
1 . 5 rA’ rB’ 1
_— — —=+1
t 2 in2 e(sm 6<2AB T Bt ))
AII + A/BI + A12 3 Al
2AB  4AB? 4A2B rAB
A// + A/B/ A/2 + B_/
2AB  4AB? @ 4A2B  rB?
A B 1.1
2rAB ~ 2rB2 r?B  r?
A B 11
2rAB ~ 2rB2 r?B  r?
A" AP A 24 2B 2 2

AB T 24B2

Y4B rAB T B BT P

11



2.5. The Einstein Field Equation
2.5.1. The tt Einstein Field Equation

1
Ry — EgttR =0

_AT AB A7 A
2B ' 4B2 ' 4AB rB
1 ( A" A'B A2 24' 2B’

_EA

distribute —%A

AL an, At A
2B 4B> ' 4AB B
A" AB A A AB A

2B 4B MAB B B2 PB R

cancel opposites

AB" A A

rB2  r2B r?

multiply by —% and move the last term to the right hand side

B_1__1
B2 rB r
This is a Bernoulli differential equation. Substitute V' = —% and V' = —
|4 1
V4 —=—-
r r
1
compute integrating factor, e/ TIr = et = r, and multiply by it
V' +V=-1
rv) =-1
integrate both sides
/(rV)' =—/1dr
rV=—-r+0C
v=-149
-

recall V = -1 so B = _1
B Vv

12

2

A

B’
B2

2

“aB T amtzaes AT BT R

)-o



notice that this correctly matches the boundary condition B(co) = 7,, = 1

2.5.2. The rr Einstein Field Equation

1
Ry — EgrrR =0

A//+AIB/+A_/2+B_/
2A  4AB  4A2 B

1 ( A"  AB A2 24' 2B’

—=B
2

L 1
distribute _EB

A// A/B/ A/2 B/
24" 34B Tam T 7B

A _AB A A B 1
2A  4AB 4A2 rA rB r?

cancel opposite terms

A 1 _B_,
rA  r2 r2

multiply remaining terms by r and separate variables

A 1 1
—_ =—_B-—"=Z
A r r

substitute the value of B derived from the ¢t field equation

A 11 1

A ri_Ga r

r

simplify

A 1 1

A:r—Cl_r

A 1 1
fzdr-f(r_c1‘7)dr

In|A| = Injr — | — In(r) + C,

integrate both sides

13

2

B
5=

2

"B mamtaes B TR BT 2

)-o



raise both sides to e

enlAl = oln|r—Ci| —In(r)+C;

simplify
1
A = K(V - Cl);
distribute *
r
A= K(l - ﬁ)
r

apply boundary condition A(o0) = 7;; = —1 to determine K = —1

-9

2.5.3. Solve for C;

A and B — and the relationship between them and a derivative.

%)

1

B = C
1— =L

.

1
B=—
A

’ Cl
A=-0

Spacetime Coordinates and Proper Time

These are the spherical spacetime coordinates as functions of proper time 7. The ¢ coordinate is

multiplied by c so that all four coordinates will be in length units.
xt = (ct(), 1(2), 8(7), (1))
where 7 is defined by the following relation

—c2dr? == ds? = g, dx*dx”

For a non moving obj at some distance r from the center of a sphere the coordinates are

xH = (ct(1),r,6,9)

The Four-Velocity

The four-velocity is the ordinary derivative of the spacetime coordinates with respect to proper time.

U = dx# <d(ct) dr d6 do

T dr  \ dr 'dr’dc’dr

14



For a motionless object this reduces to

u’“‘=(¥000)

Solve for —= ( )

of a motionless object using the Schwarzschild metric
—c2dr? = g, dx"dx”
—c?dr? = gdxHdx”
= ghtdxtdx! + g"dx"dx" + g%dx%dx® + gPPdxPdx?
= g“(dxt)2 + g™ (dx")? + gee(dxe)2 + gP?(dx?)?
= A(d(ct))? + Bdr? + r*d6? + r? sin? 6dg?

divide both sides by dz? and recall that in this case the positional derivatives are zero

— = d(Ct) /(/g/)l+r(/a/)/+r sin? G(EZ)/Z
d(ct)  [=c* _ 1
i Va ~N7a

d(ct)
= VB (2.5)

simplify

recall B = _1
A

so the four-velocity is
uk = (cV/B,0,0,0)

As a check, verify the following invariant

—c £ guu'u!
< A(elB) e/

—c2 L Ac’B

again recalling B = —%

The Four-Acceleration
The four-acceleration is the Total Covariant Derivative with respect to proper time

15



du#

Duk
== =<—+F“u"w°)

at = — !
Dt dr P

Compute the four-acceleration for a motionless object in Schwarzchild space. The only non-zero

component will be a”.

a" = = + I'T u’uf
Dt dr VP

. Du" dy/ )
a’ = Ifutu

= 3 )

AI
2B

the Bs cancel

So the four-acceleration is:

The proper acceleration « is given by:

a= \/aﬁ‘aM = \/gwaﬁ‘av

For Schwarschild, since only a" is non zero, this reduces to

a=+/ara, =+/garar
J— r
a=a grr

substitute in the equations for a” and g,

—c2A’
o= CA\/E

2

and then subsitute in the equations A’ and B

Newtons law of universal gravitation is

divide by m to get Newtonian gravitational acceleration

_GM
a—r—z

16



Make Schwarschild GR proper acceleration approximate Newtonian gravitational acceleration.

GM G 1

r2 2r2\|{_&
-
C,
Guess that — «1
GM G
r2 2r2 4 70&/
A
solve for C;
2GM
Cl ~ (:‘2

At the surface of the earth S 1.4 X 10~° which is < 1. And Actually, since G is measured and GR is

;
the more accurate representations of reality, this is the exact value of C;.

_ 2GM

C
1 c2

Substituting C; into the equation for proper acceleration gives the exact GR equation.

GM 1
r2 \|]_2oM
c2r

Which means the Newtonian equation is the approximation.

_GM
Nr_z

substitute C; into A and B

a=—(1-20)
cer

2.5.4. The Schwarzschild Metric

c2r )
— 0 0 0
o =
0 0 r2 0
0 0 0 r2sin26

The Schwarzschild Radius r; is defined as:

17



_2GM
==

rg:

It is the key scaling parameter in Schwarzschild geometry. It is used to define the Metric function f(r):

T,

r):= 1 -3
oy =12
With these defenitions the Schwarzschild Metric can be rewritten as:

—f(r) 0 O 0
2 0 0
8w = f(r)
0 0 r2 0
0 0 0 r2sin206

2.5.5. The Christoffel Symbols
A and B and their derivatives can be written in terms of the Metric function f.

A=—f
A =—f

A" =—f'B = [
B = —f2f

Use the above to eliminate A and B from the Christoffel Symbols as derived in Section 2.3

t _pt A = f e
Ftr—Frt—ZA—z(_f)—zf
rozA_ S _
F“_zB_zf—l_zf
r _ B _ = f e
F”_zB_ 2f-1 zf
r o _ r_ r _
Fee——g——p——"f
rr _ —rsin?0 _ —rsin26 in2 9
po=—F = = rsin f

18



The Christoffel Symbols can now be written in terms of the Metric function, the Swarzchild Radius, or
the Mass and fundemental contants. The Christoffel Symbols that do not depend on the Metric function
have been restated here for completness.

' -1 -1
¢ _ ot _ [l ey 2 AN GM 2GM
Lir=Trn= ?f B 7(1 B 7) B c2r2 1= c2r
- _’ _ r_s< _r_s> _ GM(_ZGM)
Ly = 2 Fo= 2r 1 r] c2r2 1 c2r
’ K s\~ GM (. 2GM\™
A T () R R
2 2r r c2r2 c2r
I, 2GM
00 rf 1=~ r 2
I, 2GM
[t,= —rsin?0f =- '29(1——3) - '29<1— )
g rsin” 0f rsin p ¥ sin 2
0 6 1
Igr=Tg = -
ré, = —sin6cosf
1
Fgr = qup = 7
Ffppe = Fépq, = cot@

2.5.6. The Ricci Tensor is Zero

Previously, I noted that the Ricci tensor is zero, but I was not yet convinced of that fact.

Ricci Tensor R;; — Start with the equation we derived previously:
A” AIB/ AI2 A/

Riu=—35+ 282 T 548 7B

Replace A and B and their derivatives with f and its derivative.

o A o 0 Gt A A D K

BT T TS (O MR
Simplify
B f// f/2 f’2 f’
Rtt—F_T—FT—FV(f_I)

Elimate the middle terms and factor out an f
_ fl/ f’
Ry = < >t f

The first and second derivatives of the metric function are f’ = r,/r? and f” = —2r,/r3. Substituting
these into the above gives:

Ry = (_ﬁ"‘ﬁ)f:()

r3 r3

19



Ricci Tensor R, — Start with the equation we derived previously:
A/I A/B/ A/2 B/

Ry=—"+—%

Aataas T B

Rewrite in terms of f and simplify

—f" G )

B ==t aena D Tac e

I A A e

27 A A g
_ f// f’ 1
‘%7+7%
_ Ty rg\1
—Gﬁ+ﬁ%

1

= —(0)7

=0

Ricci Tensor Rgg — Start with the equation we derived previously:
rA  rB" 1
-—+1

Rop = —12 4 I
0= "24B T 232 B

Rewrite in terms of f and simplify

r(=f) . r(=f72f")

1
Reo==5cng ot gy 7!
S
=-y -y
=—rf'—f+1
rS rS

=)= (1-3)+1

rS rS
=—3_1+341

r r
=0

Ricci Tensor Ry, — Start with the equation we derived previously:
rA"  rB 1 )

a2 B!

— qin2
Ry, = sin 6(—
Note that the term in parentheses equals Rgg:
Ry = sin? 8(Rgg)
= sin? 6(0)
=0

20



Ricci Tensor is Zero — The above have shown that for the Schwarzschild Metric all of the
components of the Ricci Tensor are zero. Which also means that the Ricci scalar is zero.

21



3. The Schwarzschild Metric Applications

3.1. Time Dilation (Stationary)
Consider two stationary clocks in the Schwarzschild geometry, located at fixed radii r; and r,:
x{ () = (ct1 (1), 11, 60, o)
X5(12) = (ct(2), 72, 60, o)
d(ct)

Solve for e of a motionless object using the Schwarzschild metric
T

—c?dr? = g, dx"dx”
—c?dr? = g"’dx“dx”
= ghtdx!dx! + g"dx"dx" + g%9dx®dx® + gPPdxPdx?
= gt(dx?)” + g™ (dx")? + g%(dx®) + gP?(dx?)’
= —f(r)(d(ct))® + F(r) " dr? + r2d6? + r? sin? Odg?

Divide both sides by d7? and recall that in this case the positional derivatives are zero

2
= —f(r)(%) + f(r)_l(/g{_/)l +r2(%%)/ + 7 sin? e(%f/)l
D~ 5o

Divide both sides by the speed of light ¢ to get the rate of change of coordinate time ¢ with respect to
proper time 7:

e 1
IO
Inverting provides the rate of change of proper time with respect to coordinate time:

t= 5 =Vi®

Given a coordinate time interval At, we can compute the proper time interval At:

to+At
At = f tdt
t=[0

Because in this case 7 is constant with respect to ¢:

to+At
[
=

_to
) [0+At
=71 |t0

= TAt
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Compute the difference in elapsed proper times between two radii:

ATZ]. = ATZ - ATI
= (T, — )AL

= (i - f1)<4%>

3.1.1. Earth
For Earth, the Schwarzschild radius is:

2GMg,
Ry g = = = 8.870 mm

This would be the radius of the event horizon of a black hole with the mass of earth.

The following table shows the gravitational time dilation caused by the earth relative to a clock at sea
level (r;) These do not take into account the time dilation caused by the velocity of the clocks. It’s as if
the clocks are “hovering” at the given altitude. The next section will account for the velocity of the
clocks.
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Name Alt (m) (D ATy (1d) ATty (1y)
Dead Sea —430  0.99999999930382 —4.0ns —1.4ps
Death Valley —86  0.99999999930386 —805.7ps —294.3ns
Sea Level 0 0.99999999930387
1 meter 1 0.99999999930387 19.1ps 7.0ns
Chandler, AZ 370  0.99999999930391 3.5ns 1.2ps
Mount Everest 8,848  0.99999999930483 83.4ns 30.4ps
Passenger Jet 10,000  0.99999999930496 94.2ns 34.4ps
ISS Orbit 409,000  0.99999999934586 3.6ps 1.3ms
GPS Orbit 20,189,000  0.99999999983301 45.7 pus 16.6 ms
Geosynchronous 35,793,000 0.99999999989481 51.0ps 18.6ms
Moon Orbit 378,029,000  0.99999999998846 59.1ps 21.6ms
Infinity co  1.00000000000000 60.1ps 21.9ms
Table 2: Earth Gravitational time dilation relative to Sea Level (7).
3.1.2. Sun

For the sun, the Schwarzschild radius is:

5,0

_ 2GMj

= =3.0km

This table show the time dilation caused by the sun relative to a clock “hovering” at the radius of the

earth’s orbit (7).
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Name Radius (au) (D ATy (1d) ATty (1y)
Sun Surface 0.0047  0.99999787743099 —182.5ms —1.1min
Mercury 0.39  0.99999997450019 —1.3ms —493.2ms
Venus 0.72  0.99999998635341 —326.2ps —119.1ms
Earth 1.0  0.99999999012907
Mars 1.5  0.99999999352165 293.1ps 107.0ms
Jupiter 5.2 0.99999999810335 688.9 s 251.6 ms
Saturn 9.6  0.99999999896990 763.8 s 278.9ms
Uranus 19  0.99999999948592 808.4 s 295.2ms
Neptune 30 0.99999999967149 824.4 s 301.1ms
Infinity 0 1.00000000000000 852.8 s 311.5ms
Table 3: Sun Gravitational time dilation relative to Earth Orbit (r;)
3.1.3. Sagittarius A*
the Schwarzschild radius of Sagittarius A%*, the Black hole at the center of the Milky is:
Rsgrar = mjﬁ = 12,690,000 km
Name Radius T, Aty (1d) ATty (1y)
Event Horizon Ry 0.085au  0.00000000000000 —1.0d —1.0yr
Ry+1m 0.085au  0.00000887688449 —23.9hr —365.2d
Photon Sphere® 1.5R; 0.13au  0.57735026918962 —10.1hr —154.3d
ISCO?® 3R, 0.25au  0.81649658092772 —4.4hr —67.0d
S2 Peribothron* 120au  0.99964647605890 —30.5s —3.0hr
S2 Apobothron 1,800au  0.99997692281632 —1.9s —12.1 min
Earth 26,0001y 0.99999999997420 —2.2ps —814.0ps
Andromeda Galaxy 2,500,000y 0.99999999999973 —23.1ns —8.4s
Infinity 0 1.00000000000000 0.0s 0.0s

Table 4: Sagittarius A* Gravitational time dilation relative to Infinity (r;)

! A* is pronounced “A Star”

*The Radius that light orbits
*Innermost Stable Circular Orbit
*S2 is a star with a highly eccentric orbit around SgrA*. Bothron from the Ancient Greek f60pog (bothros), “pit”
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